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Abstract

In this paper, a new four parameter zero truncated Poisson Fréchet distribution is
defined and studied. Various structural mathematical properties of the proposed model
including ordinary moments, incomplete moments, generating functions, order statistics,
residual and reversed residual life functions are investigated. The maximum likelihood
method is used to estimate the model parameters. We assess the performance of the max-
imum likelihood method by means of a numerical simulation study. The new distribution
is applied for modeling two real data sets to illustrate empirically its flexibility.
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1. Genesis, physical motivation and justification

Assume that X1, X2, ... , Xn is a finite sequence of independent and identically distributed
random variables (iid rvs) with common cumulative distribution function (CDF). One of the
most interesting statistics is the sample maximum

Mn = X =
N

max
i=1
{Xi}.

One is interested in the behavior of Mn as the sample size n increases to infinity, then

Pr {Mn ≤ x} = Pr {X1 ≤ x, ..., Xn ≤ x, }
= Pr {X1 ≤ x} ...pr {Xn ≤ x}
= G (x)n .
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Suppose there are sequences of constants {an > 0} and {bn} such that

Pr
{[

(Mn − bn) a−1n
]
≤ x

}
→ G (x) |(n→∞) .

Then, if G (x) is a non-degenerate CDF, then it will belong to one of the three following
fundamental types of classic extreme value family:

1-Gumbel (Gum) model (Type I extreme value distribution);
2-Fréchet (Fr) model (Type II extreme value distribution);
3-Weibull (W) model (Type III extreme value distribution).
The extreme value theory focuses on the behavior of the block maxima or minima. The

extreme value theory was firstly introduced by Fréchet (1927) then followed by Von Mises
(1936), Gnedenko (1943), Von Mises (1964), Kotz and Johnson (1992), among others. The
Fr distribution is one of the important distributions in extreme value theory and has many
applications such as accelerated life testing, earthquakes, floods, horse racing, rainfall, queues
in supermarkets, wind speeds and sea waves. For more details about the Fr distribution and
its applications, see Kotz and Nadarajah (2000). Moreover, applications of this distribution in
various fields are given in Harlow (2002). Recently, some extensions of the Fr distribution were
considered. The exponentiated Fr by Nadarajah and Kotz (2003), beta Fr by Nadarajah and
Gupta (2004), Nadarajah and Kotz (2008) and Zaharim et al. (2009), beta Fr (Barreto-Souza
et al. (2011) and Mubarak (2013)) , Marshall-Olkin Fr (Krishna et.al. (2013)), transmuted
Fr (Mahmoud and Mandouh (2013)), gamma extended Fr (da Silva et al. (2013)), transmuted
exponentiated Fr (Elbatal et al. (2014)), transmuted Marshall-Olkin Fr (Afify et al. (2015)),
transmuted exponentiated generalized Fr (Yousof et al. (2015)), beta exponential Fr (Mead
et al. (2016)), Weibull Fr (Afify et al. (2016b)), Kumaraswamy Marshall-Olkin Fr (Afify
et al. (2016b)), Kumaraswamy transmuted Marshall-Olkin Fr (Yousof et al. (2016)), beta
transmuted Fr by Afify et al. (2016c), odd Lindley Fréchet distribution the (Korkmaz et al.
(2017)), Transmuted Topp-Leone Fr (Yousof et al. (2017)), Topp Leone Generated Fr (Yousof
et al. (2018b)) and Odd log-logistic Féchet (Yousof et al. (2018a)), among others.

The goal of this paper is to propose a new generalization of the Topp Leone Fr (TL-Fr) distri-
bution (Yousof et al. (2018b)) using the zero-truncated Poisson (ZTP) model. the probability
density function (PDF) and CDF of TL-Fr distribution are given by

g (x) = 2θβδβx−(β+1)exp
[
−
(
δx−1

)β]
exp

[
− (θ − 1)

(
δx−1

)β]
×
{

1− exp
[
−
(
δx−1

)β]}{
2− exp

[
−
(
δx−1

)β]}θ−1
, 1 (1)

and

G (x) =
(

exp
[
−
(
δx−1

)β]{
2− exp

[
−
(
δx−1

)β]})θ
, (2)

respectively, where δ > 0 is a scale parameter and β, θ > 0 is a shape parameter. The ZTP
distribution is a discrete probability model whose support is the set of only the positive integers
(I(+)) with probability mass function (PMF) of N given by

P (N = n|n∈I(+)) =
exp (−α)αn

∆(α)Γ (1 + n)
. (3)
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Suppose that a system has N subsystems functioning independently at a given time where N
follows the ZTP distribution with parameter α. The expected value (E (N |α)) and variance
(V(N |α)) are, respectively, given by

E
(
N |α,n∈I(+)

)
= α∆−1(α),

where ∆(α) = 1− exp (−α)and

V(N |α,n∈I(+)) = α (1 + α) ∆−1(α) − α
2∆−2(α) = E (N |α) [1 + α− E (N |α)] .

The ZTP is known also as the positive Poisson distribution or the conditional Poisson distri-
bution. It is the conditional probability distribution of a Poisson distributed rv, given that the
value of the rv is not zero. Thus it is impossible for a ZTP rv to be zero.

Suppose that the failure time of each subsystem has the TL-Fr model defned by PDF and CDF
in (1) and (2). Let Yi denote the failure time of the i(th) subsystem and let

X =
N

min
i=1
{Yi} or X =

N
max
i=1
{Yi} ,

then the conditional CDF of X given N can be written as

F (x | N) = 1− Pr (X > x | N) = 1− Pr (Y1 > x)N = 1−
(

1−G(θ,β,δ)
TL−Fr (x)

)N
, (4)

therefore, the marginal CDF of X can be expressed as

F (x) |(α∈R) =

1− exp

{
−αexp

[
−θ (δx−1)

β
]{

2− exp
[
− (δx−1)

β
]}θ}

∆(α)

, (5)

equation (5) is called the CDF of the zero truncated Poisson Topp Leone Fr (ZTPTL-Fr) model.
The corresponding PDF of (5) reduces to

f (x) |(α∈R) =
2αθβδβ

∆(α)xβ+1
exp

[
−θ
(
δx−1

)β]
×
{

1− exp
[
−
(
δx−1

)β]}{
2− exp

[
−
(
δx−1

)β]}θ−1
×exp

(
−αexp

[
−θ
(
δx−1

)β]{
2− exp

[
−
(
δx−1

)β]}θ)
︸ ︷︷ ︸

A(x)

, 6 (2)

Then we provide a linear mixture for the ZTPTL-Fr density function in (6). Expanding the
quantity A (x) in power series, we can write

A (x) =∞τ=0

(−1)τ ατ
{

2− exp
[
− (δx−1)

β
]}θτ

τ !exp
[
θτ (δx−1)β

] ,
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then

f (x) = ∞
τ=0

(−1)τ ατ+1θ2(1+τ)θβδβ

τ !
(
1−∆(α)

)
xβ+1

exp
[
− [(1 + τ) θ]

(
δx−1

)β]
×
{

1− exp
[
−
(
δx−1

)β]}{
1− 2−1exp

[
−
(
δx−1

)β]}
, 7 (3)

consider the power series(
1− a1

a2

)a3
= ∞

m=0
Γ (1 + a3)

m! Γ (1 + a3 −m)

(
−a1
a2

)m
, (8)

which holds for
∣∣∣a1a2 ∣∣∣ < 1 and q > 0 real non-integer. Using the power series in (8) and after

some algebra the PDF of the ZTPTL-Fr in (7) can be expressed as

f (x) = ∞
τ,κ=0

[
cτ,κ π(1+τ)θ+κ(x; β, δ)
−cF

τ,κ π1+κ+(1+τ)θ(x; β, δ)

]
, (9)

where

cτ,κ =
θατ+1 (−1)τ+κ 2(1+τ)θ−κ

τ !∆(α) [(1 + τ) θ + κ]

(
−1 + (1 + τ) θ

κ

)
,

cF
τ,κ =

θατ+1 (−1)τ+κ 2(1+τ)θ−κ

τ !∆(α) [1 + κ+ (1 + τ) θ]

(
−1 + (1 + τ) θ

κ

)
,

the function π(1+τ)θ+κ(x; β, δ) is the Fr density with scale parameter δ [(1 + τ) θ + κ]
1
β and shape

parameter β and π1+κ+(1+τ)θ(x; β, δ) is the Fr density with scale parameter δ [1 + κ+ (1 + τ) θ]
1
β

and shape parameter β. Equation (9) reveals that the density of X can be expressed as a double
linear mixture of Fr densities. So, several of its structural properties can be obtained from
Equation (9) and those properties of the Fr distribution. By integrating (9), we obtain the
same mixture representation

F (x) = ∞
τ,κ=0

[
cτ,κ Π(1+τ)θ+κ(x; β, δ)
−cF

τ,κ Π1+κ+(1+τ)θ(x; β, δ)

]
, (10)

where Π(1+τ)θ+κ(x; β, δ) is the CDF of the Fr model with scale parameter δ [(1 + τ) θ + κ]
1
β and

shape parameter β and Π1+κ+(1+τ)θ(x; β, δ) is the CDF of the Fr model with scale parameter

δ [1 + κ+ (1 + τ) θ]
1
β and shape parameter β. The hazard rate function (HRF) can be derived

as f (x) / [1− F (x)] . Figure 1 gives some plots of the ZTPTL-Fr PDF and HRF for some
parameter values.

The justification for the practicality of the ZTPTL-Fr lifetime model is based on the wider
use of the Fr model. As well as we are motivated to introduce the ZTPTL-Fr lifetime model
because it exhibits a unimodal hazard rate as illustrated in Figure 1(b). It is shown in above
that the ZTPTL-Fr lifetime model can be viewed as a double linear mixture of the Fr distribu-
tions. It can be viewed as a suitable model for fitting the unimodal and right skewed data. The
ZTPTL-Fr model provide adequate fits as compared to other Fr models in both applications
with small values for AIC and BIC. The proposed ZTPTL-Fr model is much better than the
Kumaraswamy-Marshall–Olkin Fr, Marshall–Olkin Kumaraswamy Fr, Marshall–Olkin Fr, Ku-
maraswamy Fr, beta Fr, Marshall–Olkin inverse exponential, Marshall–Olkin inverse Rayleigh,
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Figure 1: Plots of the ZTPTL-Fr PDF and HRF for some parameter values.

exponentiated Fr and Fr models, so the ZTPTL-Fr model is a suitable alternative to these
models for modeling survival times data as illustrated in application 1. As well as the proposed
ZTPTL-Fr lifetime model is much better than the Topp Leone Generated Fr, Fr, Kumaraswamy
Fr, exponentiated Fr, beta Fr, Transmuted Fr, Marshall–Olkin Fr and Mcdonald Fr models, so
the ZTPTL-Fr model is a suitable alternative to these models for modeling repair times data
as illustrated in application 2.

The rest of the paper is outlined as follows. In Section 2, we derive some statistical properties
for the new model. Maximum likelihood estimation of the model parameters is addressed in
Section 3. Simulation results are presented in Section 4. Two applications to real data sets to
illustrate the importance of the new family are provided in Section 5. Finally, we offer some
concluding remarks in Section 6.

2. Mathematical properties

2.1 Moments and incomplete moments

The r(th) ordinary moment of X is given by

µ′r = E(Xr) =

∫ ∞
−∞

xr f (x) dx,

then we obtain

µ′r = δrΓ

(
1− r

β

) ∞∑
τ,κ=0

[
c(1)
τ,κ − c(2)

τ,κ

]
|(β>r), (11)
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where
c(1)
τ,κ =

cτ,κ

[(1 + τ) θ + κ]−
r
β

,

and

c(2)
τ,κ =

cF
τ,κ

[1 + κ+ (1 + τ) θ]−
r
β

.

The constants cτ,κ and cFτ,κ have been defined before in Section 1, and

Γ (1 + ϕ) |(ϕ∈R+) =

∫ ∞
0

xϕ exp (−t) dx = ϕ! =ϕ−1
w=0 (ϕ− w) .

Setting r = 1 in (11), we have the mean of X (µ′). The last integration can be computed
numerically for most parent distributions. The skewness and kurtosis measures can be calculated
from the ordinary moments using well-known relationships. The r(th) incomplete moment, say
Υr (t), of X can be expressed from (9) as

Υr (t) =

∫ t

−∞
xrf (x) dx,

then

Υr (t) = δr
∞∑

τ,κ=0

 c
(1)
τ,κγ

(
1− r

β
, [(1 + τ) θ + κ]

(
δ
t

)β)
−c

(2)
τ,κγ

(
1− r

β
, [1 + κ+ (1 + τ) θ]

(
δ
t

)β)
 |(β>r), (12)

where

γ (ζ, z) =

∫ z

0

tζ−1 exp (−t) dt

=
zζ

ζ
{1F1 [ζ; ζ + 1;−z]}

=
∞∑
ν=0

(−1)ν

ν! (ζ + ν)
zζ+ν |(ζ 6=0.−1,−2,...),

where 1F1 [·] is a confluent hypergeometric function, which can be evaluated by statistical soft-
ware like R software.

2.2 Numerical analysis for the µ′, variance (V(X)), skewness (Sk(X)) and kurtosis

(Ku(X)) measures

Numerical analysis for the µ′, V(X), Sk(X) and Ku(X) are listed in Tables 1 and 2 for
the ZTPTL-Fr model and for the Fr model respectively for some selected values of parameter
α, θ, β and δ using the R software. Based on Table 1 we note that:

1- The Sk(X) of the ZTPTL-Fr model is always positive.
2- The Ku(X) of the ZTPTL-Fr model can be more than 3 or less than 3.
Based on Tables 1 and 2 we note that: The skewness of the ZTPTL-Fr distribution can

range in the interval (1.704, 99.032), whereas the skewness of the Fr distribution varies only
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in the interval (1.001, 3.53). Further, the spread for the ZTPTL-Fr kurtosis is ranging from
0.625235 to 148485.5, whereas the spread for the Fr kurtosis only varies from 1.002 to 98.8 with
the above parameter values.

Table 1: E(X), V(X), Sk(X) and Ku(X) of the ZTPTL-Fr model.

δ β θ α E(X) V(X) Sk (X) Ku (X)

1 1.5 1.5 -3 2.571567 0.9743642 99.03197 148485.5
5 12.85782 24.21726 75.966 29355.88
20 51.43077 379.0067 57.35025 7170.361
50 128.5695 2264.166 46.6469 2813.691
200 513.7455 28255.84 37.25156 745.9437
500 1276.935 89460.14 56.69273 511.4524

100 0.5 1.75 -10 2375.807 4580343 1.541674 4.744495
1 738.8926 453222.2 5.88400 48.87404

1.25 496.6668 119304 9.412066 130.6124
1.5 381.6909 32180.45 15.22058 310.0421
1.75 318.3019 7494.697 37.44547 995.5315

10 0.5 1 5 6.333456 3333.628 86.60225 10002.62
5 37.02739 17198.3 37.36708 1887.333
10 74.76474 35530.41 25.50535 889.1923
50 358.0939 210585.3 9.633289 131.465
100 689.3368 473059.3 6.105031 53.45829
200 1303.943 1057407 3.793141 21.14257
500 2820.337 2758617 1.717923 5.869974
1000 4204.399 5754855 0.1825467 0.625235

5 0.25 10 -10 932.3464 4975511 2.469925 8.055438
-5 1548.428 6149727 1.703678 4.898315
5 272.3675 525808.9 7.220045 67.53774
20 31.23634 469.4178 21.24751 2997.731
30 21.80845 63.51442 18.39078 327.8126
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Table 2: E(X), V(X), Sk(X) and Ku(X) of the Fr model.

δ β E(X) V(X) Sk (X) Ku (X)

0.5 5 0.5821149 0.0334404 3.535071 48.0915
10 0.5343144 0.0055656 1.910339 10.9774
25 0.5123659 0.0007351 1.400443 6.85310
50 0.5059737 0.0001736 1.264099 6.04447

2.5 5 2.910574 0.8360089 3.535072 48.0915
10 2.671572 0.1391401 1.910339 10.97857
50 2.529868 0.0043398 1.264099 6.045233
75 2.519686 0.0018938 1.221761 5.760403

4.5 5 5.239034 2.70867 3.53507 48.0915
5 4.5 5.950756 4.60640 4.23885 98.8016
10 7.5 10.97054 4.47131 2.29491 15.5896
50 50 1.392×e−6 2561.83 1.00104 1.0028
60 20 61.8872 17.03792 1.473884 7.33349
60 50 60.71684 2.499703 1.2641 6.04521

2.3 Moment generating function

The moment generating function (MGF) MX (t) = E (exp (tX)) of X can be derived from
equation (9) as

MX (t) = δrΓ

(
1− r

β

) ∞∑
τ,κ,r=0

[
m(1)
τ,κ,r −m(2)

τ,κ,r

]
|(β>r),

where

m(1)
τ,κ,r =

tr

r!
cτ,κ [(1 + τ) θ + κ]

r
β ,

and

m(2)
τ,κ,r =

tr

r!
cF
τ,κ [1 + κ+ (1 + τ) θ]

r
β .

Using the Wright generalized hypergeometric (WGH) function which defined as

(p)Ψ(q)

[ (
δ1, A1

)
, . . . ,

(
δp, Ap

)(
β1, B1

)
, . . . ,

(
βq, Bq

) ; x

]
=
∞∑
n=0

p∏
κ=1

Γ (δκ + Aκ n)

q∏
κ=1

Γ (βκ +Bκ n)

xn

n!
,

Then, we can write M(t; δ, β) as

M(t; δ, β) = (1)Ψ(0)

[ (
1,− 1

β

)
−

; δ t

]
.
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Combining (9) and the last equation, we obtain the MGF of X in terms of WGH function, say
M(t), as

M(t) =
∞∑

κ,ν=0


cτ,κ

{
(1)Ψ(0)

[ (
1,− 1

β

)
−

; δt [(1 + τ) θ + κ]
1
β

]}

−cF
τ,κ

{
(1)Ψ(0)

[ (
1,− 1

β

)
−

; δt [1 + κ+ (1 + τ) θ]
1
β

]}
 .

2.4 Probability weighted moments

The (s, r)th PWM of X following the ZTPTL-Fr is formally defined by

ρr,s = E {Xs F (X)r} =

∫ ∞
−∞

xs F (x)r f (x) dx.

Using equations (5) and (6), we can write

f (x) F (x)r =
∞∑

τ,κ=0

[
dτ,κ π(1+τ)θ+κ(x; β, δ)
−dFτ,κ π1+κ+(1+τ)θ(x; β, δ)

]
,

where

dτ,κ =
∞∑
ν=0

2(1+τ)θ−κθατ+1 (−1)τ+κ+ν (ν + 1)τ

τ !∆r+1
(α) [(1 + τ) θ + κ]

(
r

ν

)(
−1 + (1 + τ) θ

κ

)
and

dFτ,κ =
∞∑
ν=0

2(1+τ)θ−κθατ+1 (−1)τ+κ+ν (ν + 1)τ

τ !∆r+1
(α) [1 + κ+ (1 + τ) θ]

(
r

ν

)(
−1 + (1 + τ) θ

κ

)
,

then, the (s, r)th PWM of X can be expressed as

ρr,s = δsΓ

(
1− s

β

) ∞∑
τ,κ=0

[
d(1)τ,κ − d(2)τ,κ

]
|( β>s),

where

d(1)τ,κ =
dτ,κ

[(1 + τ) θ + κ]−
s
β

,

and

d(2)τ,κ =
dFτ,κ

[1 + κ+ (1 + τ) θ]−
s
β

.

2.5 Residual life and reversed residual life functions

The n(th) moment of the residual life, say

mn(t) = E[(X − t)n |(n=1,2,...)
(X>t) ],

uniquely determine F (x). The n(th) moment of the residual life of X is given by

mn(t) = [1− F (t)]−1
∫ ∞
t

(x− t)ndF (x),
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then

mn(t) =
δn

1− F (t)

n∑
r=0

∞∑
τ,κ=0

 b
(1)
τ,κΓ

(
1− n

β
, [(1 + τ) θ + κ]

(
δ
t

)β)
−b(2)τ,κΓ

(
1− n

β
, [1 + κ+ (1 + τ) θ]

(
δ
t

)β)
 |(β>n),

where

Γ (ζ, z) |(z>0) =

∫ z

0

tζ−1 exp (−t) dt

∼ zζ−1

exp (z)

 1

+ ζ−1
z

+ (ζ−1)(ζ−2)
z2

+ ...

 ,
Γ (ζ, z) = Γ (ζ)− γ (ζ, z) ,

b(1)τ,κ =
cτ,κ

[(1 + τ) θ + κ]
−n
β

(
n

r

)
(−t)n−r

and

b(2)τ,κ =
cF
τ,κ

[1 + κ+ (1 + τ) θ]
−n
β

(
n

r

)
(−t)n−r .

The n(th) moment of the reversed residual life, say

Mn(t) = E
[
(t−X)n |(n=1,2,...)

(X≤t) ∀ (t > 0)
]
,

or

Mn(t) = F (t)−1
∫ t

0

(t− x)ndF (x).

Then, the n(th) moment of the reversed residual life of X becomes

Mn(t) = δnF (t)−1
n∑
r=0

∞∑
τ,κ=0

 ξ
(1)
τ,κγ

(
1− n

β
, [(1 + τ) θ + κ]

(
δ
t

)β)
−ξ(2)τ,κγ

(
1− n

β
, [1 + κ+ (1 + τ) θ]

(
δ
t

)β)
 |(β>n),

where

ξ(1)τ,κ =
cτ,κ

[(1 + τ) θ + κ]
−n
β

(−1)r tn−r,

and

ξ(2)τ,κ =
cF
τ,κ

[1 + κ+ (1 + τ) θ]
−n
β

(−1)r tn−r.

The mean waiting time or mean inactivity time (MIT) also called the mean reversed residual
life function is given by M1(t) = E[(t − X) |(X≤t)], and it represents the waiting time elapsed
since the failure of an item on condition that this failure had occurred in (0, t). The MIT of the
ZTPTL-Fr distribution can be obtained easily by setting n = 1 in the above equation.
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2.6 Order statistics and quantile spread ordering

LetX1, . . . , Xn be a random sample (RS) from the ZTPTL-Fr distribution and letX1:n, . . . , Xn:n

be the corresponding order statistics. The PDF of i(th) order statistic, say Xi:n, can be written
as

fi:n (x) =
f (x)

B (i, n− i+ 1)

n−i∑
κ=0

(−1)κ
(
n− i
κ

)
F κ+i−1 (x) , (13)

where B(·, ·) is the beta function. Substituting (5) and (6) in equation (13) and using a power
series expansion,we get

f (x) F (x)κ+i−1 =
∞∑

w,m=0

[
tw,m π(1+w)θ+m(x; β, δ)
−tFw,m π1+m+(1+w)θ(x; β, δ)

]
,

where

tw,m =
∞∑
ν=0

2θ(w+1)−mθαw+1 (−1)w+m+ν (ν + 1)w

w!∆κ+i
(α) [θ (w + 1) +m]

×
(
−1 + κ+ i

ν

)(
−1 + (1 + w) θ

m

)
,

and

tFw,m =
∞∑
ν=0

2θ(w+1)−mθαw+1 (−1)w+m+ν (ν + 1)w

w!∆κ+i
(α) [θ (w + 1) +m+ 1]

×
(
−1 + κ+ i

ν

)(
−1 + (1 + w) θ

m

)
.

The PDF of Xi:n can be expressed as

fi:n (x) =
n−i∑
κ=0

(−1)κ
(
n−i
κ

)
B (i, n− i+ 1)

∞∑
w,m=0

[
tw,m π(1+w)θ+m(x)− tFw,m π1+m+(1+w)θ(x)

]
.

The q(th) ordinary moment of Xi:n can be expressed as

E (Xq
i:n) = δqΓ

(
1− q

β

) n−i∑
κ=0

∞∑
w,m=0

(−1)κ
(
n−i
κ

)
B (i, n− i+ 1)

[
t
(1)
w,m,h − t

(2)
w,m,h

]
|(β>q),

where

t
(1)
w,m,h =

tw,m,h

[(1 + w) θ +m]−
q
β

,

and

t
(2)
w,m,h =

tFw,m,h

[1 +m+ (1 + w) θ]−
q
β

.

The quantile spread (QS) of the rv T ∼ZTPTL-Fr(α, θ, β, δ) is given by

{QS}T (η) =
[
F−1(η)− F−1(1− η)

]
|
(
η ∈

(
1

2
, 1

))
,
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which implies

{QS}T (η) =
[
S−1(1− η)

]
−
[
S−1(η)

]
,

where

F−1(η) = S−1(1− η) and S(T ) = 1− F (T ),

is the survival function. The QS of a any probability distribution describes how the probability
mass is placed symmetrically about its median and hence it can be used to formalize concepts
such as peakedness and tail weight traditionally associated with the kurtosis. So, it allows us to
separate concepts of the kurtosis and peakedness for asymmetric models. Let T1 and T2 be two
rvs following the ZTPTL-Fr model with {QS}T1 and {QS}T2 , respectively. Then T1 is called
smaller than T2 in quantile spread order, denoted as T1 ≤{QS} T2, if

{QS}T1 (ξ) |(η∈( 12 ,1)) ≤ {QS}T2 (η) ,

then we have the following results:

1−The order ≤{QS} is a location-free, where T1 ≤{QS} T2 if

(T1 + κ) ≤{QS} T2|(κ∈R).

2−The order ≤{QS} is dilative, where

T1 ≤{QS} κT1|(κ≥1),

and

T2 ≤{QS} κT2 |(κ≥1).

3−Let FT1 and FT2 be symmetric, then T1 ≤{QS} T2 if, and only if

F−1T1
(η) ≤ F−1T2

(η) |(η∈( 1
2
,1)).

4−The order ≤{QS} implies ordering of the mean absolute deviation around the median, say
ξ(Ti)|(i=1,2), the we have

ξ(Ti) = E [|Ti −Median(Ti)|] ,

where

T1 ≤{QS} T2 ⇒ ξ(T1) ≤{QS} ξ(T2),

finally T1 ≤{QS} T2 if, and only if

−T1 ≤{QS} −T2.

3. Estimation

Let x1, . . . , xn be a RS from the ZTPTL-Fr distribution with parameters α, θ, β and δ.
Let Θ =(α, θ, β, δ)ᵀ be the 4 × 1 parameter vector. For determining the maximum likelihood
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estimators (MLEs) of Θ, we have the log-likelihood function

` = `(Θ) = n log 2 + n logα + n log θ + n log β + nβ log δ

−n log
(
∆(α)

)
− (β + 1)

n∑
i=1

log xi − θδβ
n∑
i=1

x−βi

−α
n∑
i=1

exp
[
−θ
(
δx−1i

)β]{
2− exp

[
−
(
δx−1i

)β]}θ
+

n∑
i=1

log
{

1− exp
[
−
(
δx−1i

)β]}
+ (θ − 1)

n∑
i=1

log
{

2− exp
[
−
(
δx−1i

)β]}
.

The above log-likelihood function can be maximized numerically by using R (optim), SAS (PROC
NLMIXED) or Ox program (sub-routine MaxBFGS), among others. The components of the score

vector, U (Θ) = ∂`
∂Θ

=
(
∂`
∂α
, ∂`
∂θ
, ∂`
∂β
, ∂`
∂δ

)ᵀ
are availabe if needed. Setting the nonlinear system

of equations Uα = Uθ = Uβ = Uδ = 0 and solving them simultaneously yields the MLE

Θ̂ = (α̂, θ̂, β̂, δ̂)ᵀ. To solve these equations, it is usually more convenient to use nonlinear opti-
mization methods such as the quasi-Newton algorithm to numerically maximize `. For interval
estimation of the parameters, we obtain the 4× 4 observed information matrix J(Θ) = { ∂2`

∂r ∂s
}

(for r, s = α, θ, β, δ), whose elements can be computed numerically. Under standard regularity

conditions when n→∞, the distribution of Θ̂ can be approximated by a multivariate normal
N4(0,J(Θ̂)−1) distribution to construct approximate confidence intervals for the parameters.

Here, J(Θ̂) is the total observed information matrix evaluated at Θ̂. The method of the re-
sampling bootstrap can be used for correcting the biases of the MLEs of the model parameters.
Good interval estimates may also be obtained using the bootstrap percentile method.

4. Simulation results

We present some simulation experiments for some different sample sizes in order to assess
the accuracy of the MLEs. Simulating rvs from well defined probability distributions has been
discussed in the literature of computational statistics, e.g. the inverse transformation method,
the rejection and acceptance sampling technique, etc. The ideal technique for simulating from
the ZTPTL-Fr distribution is the inversion method, we can simulate rv X by

X = δ

− ln

1−

1−

(
− ln

{
1−

[
U
(
∆(α)

)]}
α

) 1
θ


1
2




1
β

,

where U is a uniform random number in (0, 1). For selected combinations of α, θ, β and δ we
generate samples of sizes n = 50, 100, 200, 300, 500 and 1000 from the ZTPTL-Fr distribution.
We repeat the simulations N = 1000 times,we use two combinations for the parameter values
(α=2.5, θ =1.5, β = 1 and δ=2 ) in order to obtain average estimates (AEs) and mean square
errors (MSEs) of the parameters. The empirical results obtained via using the well-known R
package are given in Table 3.
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Table 3: Empirical AEs and (MSEs) for α=2.5, θ =1.5, β = 1 and δ=2.

AEs and its corresponding (MSEs)

Sample size(n) α̂ θ̂ β̂ δ̂

50 2.61195 1.68512 1.47851 2.61178
(1.76198) (0.981681) (1.342916) (2.98781)

100 2.59812 1.63221 1.31917 2.52245
(1.3225) (0.822465) (1.15650) (1.15671)

200 2.60112 1.57613 1.11875 2.38751
(1.21391) (0.587918) (0.89794) (0.32292)

300 2.51686 1.54572 1.03218 2.31510
(1.00293) (0.44371) (.1988569) (0.0901)

500 2.50224 1.50319 1.00166 2.0691
(0.08571) (0.299718) (0.09829) (0.00972)

1000 2.50021 1.50027 1.00071 2.00651
(0.000163) (0.019226) (0.011985) (0.000567)

We observe that our estimates are pretty stable especially when n ≥ 300 and as n increases
the MSEs and biases decreases. So, the maximum likelihood method works very well to estimate
the model parameters.

5. Data analysis

In this section we provide applications of the ZTPTL-Fr distribution using two real data
sets. In order to compare the distributions, we consider some criteria like Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) value is chosen as the best model
to fit the data.

The first data set consists of 72 observations of survival times for Guinea pigs injected with
different doses of tubercle bacilli: 12, 15, 43, 44, 263, 297, 341, 34148, 76, 76, 81, 83, 84, 85, 87,
58, 52, 53, 73, 75, 59, 60, 54, 4, 24, 175, 22, 234, 38, 38, 70, 70, 72, 175, 211, 32, 62, 63, 65,
65, 67, 68, 60, 32, 33, 54, 55, 56, 146, 233, 258, 57, 58, 60, 60, 61, 91, 95, 96, 98, 99, 109, 110,
121, 127, 129, 131, 143, 146, 258 and 376.These data were previously studied by Krishna et al.
(2013). We compare the proposed ZTPTL-Fr distribution with other related models namely:
the Kumaraswamy Marshall–Olkin Fr (KwMO-Fr), MOKw-Fr, Kw-Fr, MO-Fr, beta -Fr (B-Fr),
Exponentiated Fr (E-Fr), Marshall–Olkin Invere Exponential (MOIE), Marshall–Olkin invere
Rayleigh (MOIR) and Fr distributions. The second data set (repair times data) represents an
active repair times (hours) for an airborne communication transceiver, to be self-contained, this
data set is reproduced as follows: 0.2, 0.5, 0.5, 0.3, 0.5, 1.0, 1.0, 1.3, 11.5,1.5, 0.7, 0.7, 1.0, 1.0,
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1.1, 10.3, 22.02.0, 2.0, 2.2, .5, 1.5, 2.5, 2.7, 4.0, 4.0, 4.5, 3.0, 3.0, 3.3, 3.3, 4.7, 7.0, 7.5, 5.0, 5.4,
5.4, 8.8, 9.0, 0.5, 0.6, 0.6, 0.8, 0.8, 0.7 and 24.5. Many other useful real data sets are available
in Brito et al. (2017), Alizadeh et al. (2018), Korkmaz et al. (2018 and 2019), Cordeiro et al.
(2019), Abouelmagd et al. (2019a,b,c), Goual et al. (2019), Goual and Yousof (2019) Yadav etl
al. (2019) and Al-Babtain et al. (2020a and b).

The total time test (TTT) plot is an important graphical approach to verify whether the data
set can be applied to a specific model or not. Due to Aarset (1987), the empirical version of the
TTT plot is given by plotting

T (rn−1) =

(
n∑
j=1

yj:n

)−1 r∑
j=1

yj:n + (n− r)yj:n,

against rn−1, where r = 1, . . . , n and yj:n|(j=1,...,n) are the order statistics of the sample. Aarset
(1987) showed that the HRF is constant if the TTT plot is graphically presented as a straight
diagonal. The HRF is increasing (or decreasing) if the TTT plot is concave (or convex). The
HRF is U-shaped (bathtub) if the TTT plot is firstly convex and then concave, if not, the HRF
is unimodal. The TTT plots the three real data sets is presented in Figure 2. Plots in Figure
2 indicates that the empirical HRFs of the two data sets are ”upside down then bathtub” and
upside down respectively. We compare the proposed ZTPTL-Fr distribution with other related

Figure 2: TTT plots for the data set I (left) and data set II (right).

models namely: the Topp Leone Generated Fr (TLG-Fr) , Fr, Kw-Fr, E-Fr, B-Fr, transmuted
Fr (T-Fr), MO-Fr and Mcdonald Fr (Mc-Fr) distributions.

Tables 4 and 6 list the values of AIC and BIC however the MLEs and their corresponding
standard errors (in parentheses) of the model parameters are listed in Tables 5 and 7 respectively.
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Table 4: AIC and BIC for data I.

Model AIC BIC

ZTPTL-Fr 696.9 706.1

KwMO-Fr 751.6 762.9

E-Fr 786.5 793.3

Kw-Fr 788.5 797.6

ZB-Fr 787.2 794.1

B-Fr 788.6 797.7

KwMOIE 790.7 799.8

MOKw-Fr 794.2 805.6

Fr 795.3 799.9

MO-Fr 796.1 802.9

KwMOIR 808.2 817.3

All values are obtained using the R program. Figure 3 give the fitted PDF, CDF, HRF, P-P
plot and Kaplan-Meier survival plot for data I. Figure 4 give the fitted PDF, CDF, HRF, P-P
plot and Kaplan-Meier survival plot for data II.
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Table 5: MLEs and their standard errors (in parentheses) for the survival times for Guinea pigs.

Model Estimates

ZTPTL-Fr(α, θ, β, δ) -3.796 0.0437 1.654 206.008
(1.1799) (0.000) (0.098) (14.38)

KwMO-Fr(a, b, α, β, δ) 0.068 54.638 308.470 0.087 69.693
(0.984) (0.063) (0.229) (0.038) (0.082)

E-Fr(b, β, δ) 8.2723 0.6207 336.3679
(7.953) (0.208) (374.803)

Kw-Fr(a, b, β, δ) 45.7326 8.2723 0.6207 0.7111
(0.092) (0.979) (0.003) (0.013)

ZB-Fr(a, β, δ) 26.048 1.537 6.638
(0.597) (0.008) (0.007)

B-Fr(a, b, β, δ) 19.9786 20.1331 0.322 24.5032
(7.246) (7.26) (0.00115) (0.087)

KwMOIE(a, b, α, δ) 8.8727 68.1393 2.6258 0.1758
(1.174) (0.020) (0.512) (0.000)

MOKw-Fr(α, a, b, β, δ) 0.449 22.880 1.376 2.666 0.449
(0.021) (3.338) (0.087) (0.869) (0.021)

Fr(β, δ) 1.4148 54.1888
(0.00271) (0.111)

MO-Fr(α, β, δ) 14.9816 1.7855 13.991
(4.6305) (0.193) (2.964)

Kw-MOIR(a, b, α, δ) 9.993 58.4697 0.6389 1.6788
(1.972) (0.105) (0.098) (0.001)

Based on the figures in Tables 4 and 6, we conclude that the ZTPTL-Fr model provide
adequate fits as compared to other Fr models in both applications with small values for AIC
and BIC. In Application 1, the proposed ZTPTL-Fr model is much better than the B-Fr, E-Fr,
MOKw-Fr, MOIE, KwMO-Fr, MO-Fr, Kw-Fr, MOIR and Fr models, so the ZTPTL-Fr model
is a good alternative to these models. In Application 2, the proposed ZTPTL-Fr lifetime model
is much better than the Fr, T-Fr, Kw-Fr, MO-Fr, TLG-Fr , E-Fr, B-Fr and Mc-Fr models, so
the ZTPTL-Fr model a good alternative to these models.
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Table 6: AIC and BIC for data II.

Model AIC BIC

ZTPTL-Fr 144.3 151.6

TLG-Fr 207.2 214.5

Fr 207.4 215.0

Kw-Fr 207.4 214.6

E-Fr 207.4 214.9

B-Fr 207.4 214.7

T-Fr 207.8 215.3

MO-Fr 207.9 214.7

Mc-Fr 207.8 216.9

6. Conclusions

In this paper, a new four parameter zero truncated Poisson Fr distribution called the zero-
truncated Poisson Topp Leone Fr (ZTPTL-Fr) model is defined and studied. Various structural
mathematical properties of the proposed extreme value model including ordinary and incomplete
moments, residual and reversed residual life functions generating functions and order statistics
are investigated. The maximum likelihood method is used to estimate the model parameters.
The new distribution is applied for modeling two real data sets to illustrate empirically its
flexibility. The ZTPTL-Fr model provide adequate fits as compared to other Fr models in
both applications with small values for AIC and BIC. The proposed ZTPTL-Fr model is
much better than Marshall–Olkin Kumaraswamy Fr, beta Fr, Marshall–Olkin Fr, Kumaraswamy
Fr, the Kumaraswamy-Marshall–Olkin -Fr, Marshall–Olkin inverse exponential, Marshall–Olkin
inverse Rayleigh, exponentiated Fr and Fr models, so the ZTPTL-Fr model is a good alternative
to these models for modeling survival times data. As well as the proposed ZTPTL-Fr lifetime
model is much better than the Fr, Transmuted Fr, Kumaraswamy Fr, Topp Leone Generated Fr,
exponentiated Fr, beta Fr, Marshall–Olkin Fr and Mcdonald Fr models, so the ZTPTL-Fr model
a good alternative to these models for modeling repair times data. We assess the performance
of the maximum likelihood method by means of a numerical simulation study, We observe that
our estimates are pretty stable especially when n ≥ 300 and as n increases the MSEs decreases.
So, the maximum likelihood method works very well to estimate the model parameters.
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Table 7: MLEs and their standard errors (in parentheses) for the repair times data.

Model Estimates

ZTPTL-Fr(α, θ, β, δ) -7.3631 0.0026 1.0887 48.2580
1.566×e−1 5.586×e−4 3.163×e−1 5.8795×e1

TLG-Fr(a, b, β, δ) 0.1405 2.1672 0.8958 4.9552
(0.2299) (20.072) (0.1675) (51.257)

Fr(β, δ) 1.0128 1.1297
(0.1129) (0.1740)

Kw-Fr(a, b, β, δ) 1.1619 3.8034 0.5401 4.0226
(7.452) (4.604) (0.2753) (47.459)

E-Fr(a, β, δ) 0.9881 1.0125 1.1433
(23.679) (0.1129) (27.057)

B-Fr(a, b, β, δ) 2.3521 5.8362 0.4147 3.4905
(8.581) (14.877) (0.5619) (13.461)

T-Fr(a, β, δ) -0.6364 1.0853 0.7747
(0.1173) (0.1226) (0.3633)

MO-Fr(a, β, δ) 4.9168 1.3384 0.5066
(6.1834) (0.2574) (0.3068)

Mc-Fr(a, b, α, β, δ) 0.0125 96.427 0.8957 12.281 10.570
(0.0108) (354.85) (0.1297) (45.502) (35.124)
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Figure 3: The fitted PDF, CDF, HRF, P-P plot and Kaplan-Meier survival plot for the first
data set.
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Figure 4: The fitted PDF, CDF, HRF, P-P plot and Kaplan-Meier survival plot for the second
data set.
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